AUTOMATION TECHNIQUES FOR VNA MEASUREMENT

Brian Walker, Engineering Manager, Copper Mountain Technologies

WHY AUTOMATE VNA MEASUREMENTS?

- Operating a VNA through automation is an extremely powerful technique
- There is a learning curve, but hopefully this webinar will jump-start the process!

LOADING PYTHON

- Many programming platforms are available: Python, C++, C#, VBE among others
- I'll focus here on Python 3.x, which is open source with lots of useful libraries and is therefore a great choice of instrument automation
 - 1. Navigate to <u>Anaconda.com</u> on your browser and download the executable for Windows or Linux
 - 2. After installation is complete, load the Virtual Instrument Software Architecture, pyvisa library. Do this by adding a new library source to Anaconda, conda-forge
 - 3. From the start menu, launch Anaconda Prompt; this will bring up an Anaconda command console
 - 4. Type "conda config --show channels" and it should return "defaults"

LOADING PYTHON

- 5. Enter "conda config -- add channels conda-forge". This will add the library source, conda-forge, to the list.
 - Type "conda config --show channels" and you'll see the new addition
- 6. Now, type "conda install pyvisa" and answer "y" if asked to continue
 - In the future, if Python states "module not found" for a library, use "conda install" in an Anaconda Prompt window to add it. Do not use "PIP"!
 - With this, Python will be ready for instrument control

ABOUT SCPI

- We use SCPI commands to control the VNA through software automation
- Standard Commands for Programmable Instruments, or SCPI, is a standardized language for instrument control
- These are ASCII strings which are sent to a computer socket assigned to an instrument
- Instruments of the same type should respond identically to SCPI commands
- All SCPI commands are detailed in the VNA operating and programming manual

CONNECTING TO THE VNA

- Make sure that the VNA software is running (RVNA, TRVNA, S2VNA, or S4VNA)
- Navigate to System>Misc Setup>Network Remote Control Settings
- Ensure that the Socket Server is ON and set to Port 5025
- For SNVNA, look under Settings

CONNECTING TO THE VNA

1. In Python, set up a visa resource manager:

```
rm = visa.ResourceManager()
```

2. Assign it to VNA default port 5025 and name it "CMT"

```
CMT = rm.open_resource('TCPIP0::localhost::5025::SOCKET')
```

- Local host or 127.0.0.1 refers to the machine on which the VNA software is running
 - If on another machine, enter that IP address
- 3. Set Carriage Return as a query termination, and set a long timeout for long sweeps

```
CMT.read_termination='\n' CMT.timeout = 100000
```


SCPI COMMAND EXAMPLE

• To set up a VNA measurement with 1GHz Start, 5 GHz Stop, 801 points and 10 kHz IF Bandwidth, the SCPI Commands would be:

SENS:FREQ:STAR 1E9 SENS:FREQ:STOP 5E9 SENS:SWE:POIN 801 SENS:BWID 10000

• Set trace 1 to measure S11:

CALC:PAR1:DEF S11

• Set sweep to programmatic triggering:

TRIG:SOUR:BUS

SCPI COMMAND EXAMPLE

• Sweep once:

```
*OPC? (OPC query hangs until sweep is complete)
```

- Get the frequency points (comma separated data in string format):

 Freq = SENS:FREQ:DATA?
- Get the reflection data in RI format (comma separated R,I,R,I,R,I...):

 Data = CALC:TRAC1:DATA:SDAT?
- The data can now be formatted in any way desired and plotted using the matplotlib library

LET'S TRY IT!

