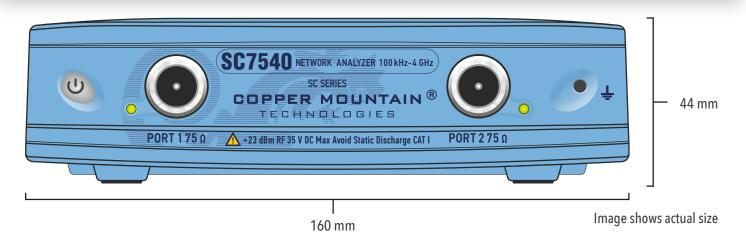
SC7540 Extended Data Sheet



- Frequency range: 100 kHz 4 GHz
- Wide output power range: -50 dBm to +10 dBm
- Dynamic range: 133 dB (10 Hz IF bandwidth) typ.
- Measurement time per point: 24 µs per point, min typ.
- 16 logical channels with 16 traces each max.
- Automation programming in Python, LabVIEW, MATLAB, .NET, etc.

- 75 Ohm VNA
- Time domain and gating conversion included
- Frequency offset mode, including vector mixer calibration measurements
- Up to 200,001 measurement points
- Multiple precision calibration methods and automatic calibration

SC7540 Specifications¹

Primary Specifications

Impedance	75 Ohm
Test port connector	type N, female
Number of test ports	2
Frequency range	100 kHz to 4 GHz
Full frequency accuracy	±5·10 ⁻⁶
Frequency resolution	1 Hz
Number of measurement points	2 to 200,001
Measurement bandwidths (with 1/1.5/2/3/5/7 steps)	1 Hz to 300 kHz
Dynamic range ²	
100 kHz to 1 MHz	75 dB (100 dB typ.)
1 MHz to 4 GHz	132 dB (137 dB typ.)

Effective System Data

100 kHz to 4 GHz	
Directivity	46 dB
Source match	40 dB
Load match	46 dB
Reflection tracking	±0.10 dB
Transmission tracking	±0.14 dB

Uncorrected System Performance

100 kHz to 1 MHz	
Directivity	12 dB
Source match	15 dB
Load match	15 dB
1 MHz to 3 GHz	
Directivity	15 dB (18 dB typ.)
Source match	15 dB
Load match	22 dB
3 GHz to 4 GHz	
Directivity	15 dB
Source match	15 dB
Load match	18 dB

Measurement Accuracy

Accuracy of transmission measurements ⁴	Magnitude / Phase
100 kHz to 1 MHz	
-15 dB to +10 dB	±0.2 dB / ±2°
-35 dB to -15 dB	±1.0 dB / ±6°
1 MHz to 4 GHz	
0 dB to +10 dB	±0.2 dB / ±2°
-55 dB to 0 dB	±0.15 dB / ±1.5°
-75 dB to -55 dB	±0.2 dB / ±2°
-95 dB to -75 dB	±1.0 dB / ±6°
Accuracy of reflection measurements⁵	Magnitude / Phase
-15 dB to 0 dB	±0.4 dB / ±3°
-25 dB to -15 dB	±1.0 dB / ±6°
-35 dB to -25 dB	±3.0 dB / ±20°
Trace noise magnitude (IF bandwidth 3 kHz)	
100 kHz to 300 kHz	0.050 dB rms
300 kHz to 4 GHz	0.002 dB rms
Temperature dependence	0.02 dB/°C

SC7540 Specifications¹

Test Port Output

Power range	-50 dBm to +10 dBm
Power accuracy	±1.0 dB
Power resolution	0.05 dB
Harmonic distortion ⁶	-20 dBc
Non-harmonic spurious ⁶	-30 dBc

Test Port Input

Noise floor	
100 kHz to 1 MHz	-75 dBm/Hz
1 MHz to 4 GHz	-132 dBm/Hz
Damage level	+23 dBm
Damage DC voltage	35 V

Measurement Speed

Time per point	24 μs typ.
Port switchover time	0.2 ms

Frequency Reference Input

Port	10 MHz Ref In/Out
External reference frequency	10 MHz
Input level	-3 dBm to 3 dBm
Input impedance	50 Ohm
Connector type	BNC, female

Frequency Reference Output

Port	10 MHz Ref In/Out
Internal reference frequency	10 MHz
Output reference signal level at 50 Ohm impedance	-1 dBm to 3 dBm
Connector type	BNC, female

Trigger Input

Port	Ext Trig
Input level	
Low threshold voltage	0.5 V
High threshold voltage	2.7 V
Input level range	0 V to + 5 V
Pulse width	≥2 µs
Polarity	positive or negative
Input impedance	≥10 kOhm
Connector type	BNC, female

Trigger Output

Port	Ext Trig
Maximum output current	20 mA
Output level	
Low level voltage	0.5 V
High level voltage	3.5 V
Polarity	positive or negative
Connector type	BNC, female

System & Power

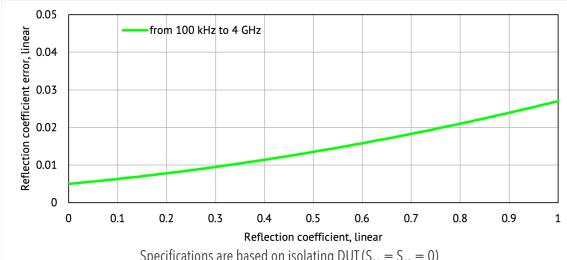
Operating system	Windows 7 and above
CPU frequency	1.5 GHz
RAM	1 GB
Interface	USB 2.0
Connector type	USB C
Input power (VNA)	9 V DC to 15 V DC
Input power consumption (VNA)	18 W
Power supply (Main Outlet)	110-240 V, 50/60 Hz
Power consumption (Main Outlet)	20 W

Factory Adjustment

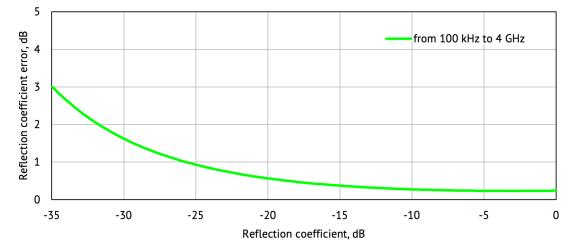
Recommended factory adjustment interval	3 years
---	---------

Dimensions

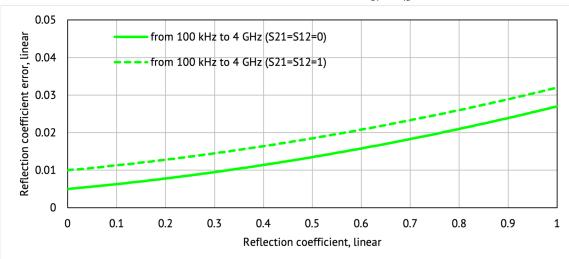
Length	297 mm
Width	160 mm
Height	44 mm
Weight	1.7 kg (60 oz)


Environmental Specifications

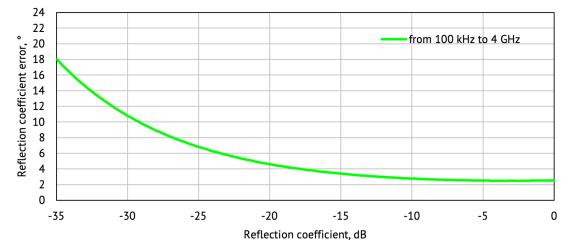
Operating temperature	+5 °C to +40 °C (41 °F to 104 °F)
Storage temperature	-50 °C to +70 °C (-58 °F to 158 °F)
Humidity	90 % at 25 °C (77 °F)
Atmospheric pressure	70.0 kPa to 106.7 kPa


[1] All specifications subject to change without notice. [2] The dynamic range is defined as the difference between the specified maximum power level and the specified noise floor. The specification applies at 10 Hz IF bandwidth. [3] Reflection and transmission measurement accuracy applies over the temperature range of (73 ± 9) °F or (23 ± 5) °C after 40 minutes of warming-up, with less than 1 °C deviation from the full two-port calibration temperature, at output power of 0 dBm. Frequency points have to be identical for measurement and calibration (no interpolation allowed). [4] Transmission specifications are based on a matched DUT, and IF bandwidth of 10 Hz. [5] Reflection specifications are based on an isolating DUT. [6] Specification applies over frequency range from 300 kHz to upper frequency limit, at output power of 0 dBm. © Copper Mountain Technologies - www.coppermountaintech.com - Rev. 2024Q1

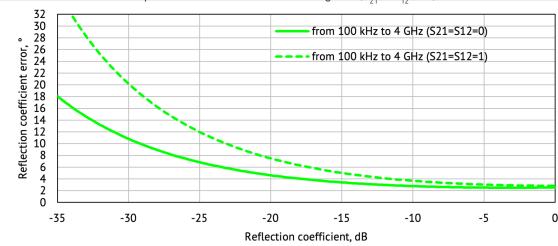
Reflection Accuracy Plots


Reflection Magnitude Errors

Specifications are based on isolating DUT ($S_{21} = S_{12} = 0$)



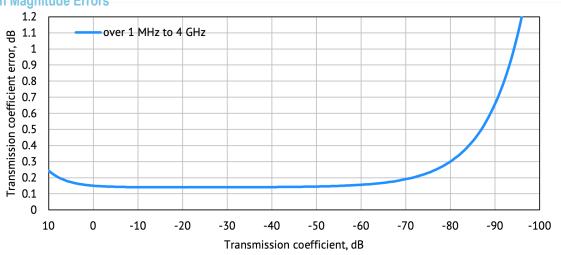
Specifications are based on isolating DUT ($S_{21} = S_{12} = 0$)



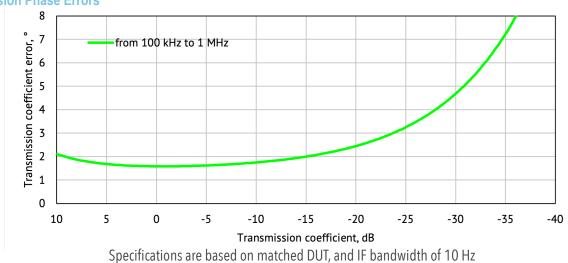
Reflection/Transmission Accuracy Plots

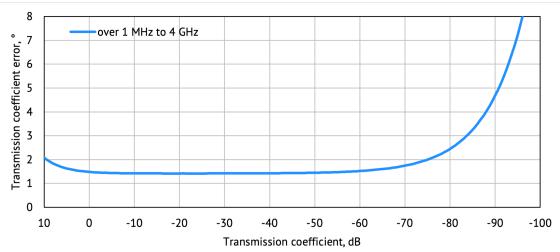
Reflection Phase Errors

Specifications are based on isolating DUT ($S_{21} = S_{12} = 0$)


Transmission Magnitude Errors

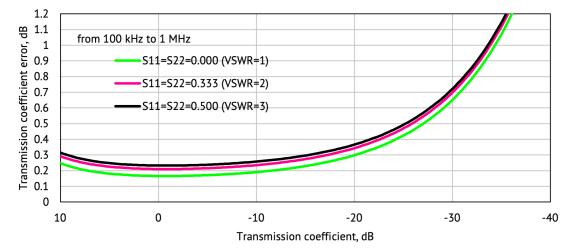
Specifications are based on matched DUT, and IF bandwidth of 10 Hz

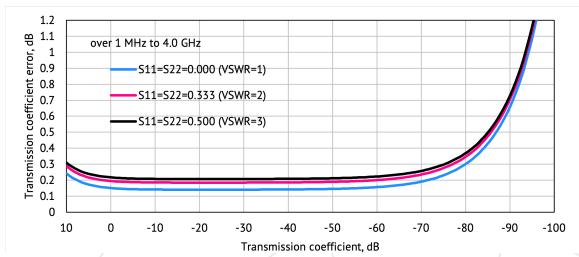

Transmission Accuracy Plots


Transmission Magnitude Errors

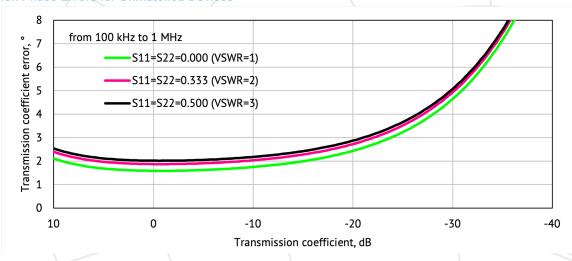
Specifications are based on matched DUT, and IF bandwidth of 10 Hz

Transmission Phase Errors

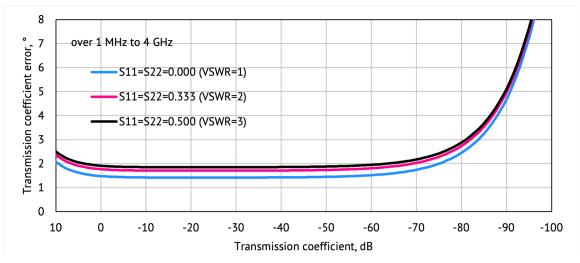




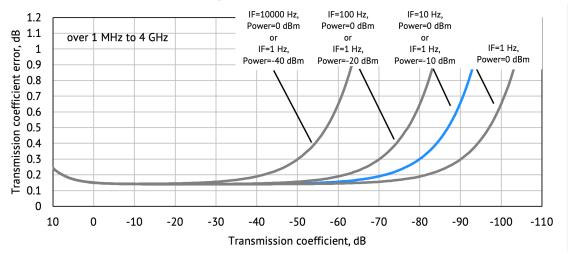
Specifications are based on matched DUT, and IF bandwidth of 10 Hz


Transmission Accuracy Plots

Transmission Magnitude Errors for Unmatched Devices



Transmission Phase Errors for Unmatched Devices



Transmission Accuracy Plots

Transmission Phase Errors for Unmatched Devices

Transmission Errors for Matched Devices vs Output Power and IF Bandwidth

Technology is supposed to move. It's supposed to change and update and progress. It's not meant to sit stagnant year after year simply because that's how things have always been done.

The engineers at Copper Mountain Technologies are creative problem solvers. They know the people using VNAs don't just need one giant machine in a lab. They know that VNAs are needed in the field, requiring portability and flexibility. Data needs to be quickly transfered, and a test setup needs to be easily automated and recalled for various applications. The engineers at Copper Mountain Technologies are rethinking the way VNAs are developed and used.

Copper Mountain Technologies' VNAs are designed to work with the Windows or Linux PC you already use via USB interface. After installing the test software, you have a top-quality VNA at a fraction of the cost of a traditional analyzer. The result is a faster, more effective test process that fits into the modern workspace. This is the creativity that makes Copper Mountain Technologies stand out above the crowd.

We're creative. We're problem solvers.

Compact Series S Models Overview

	SC5065	SC5090	SC7540
Frequency Range	300 kHz to 6.5 GHz	300 kHz to 9 GHz	100 kHz to 4 GHz
Dynamic Range	140 dB, typ.	140 dB, typ.	137 dB, typ.
S-parameters	S11, S21, S12, S22	S11, S21, S12, S22	S11, S21, S12, S22

631 E. New York Street Indianapolis, IN 46202

United States: +1.317.222.5400 APAC: +65.63.23.6546 Latin America: +1.954.706.5920 EMEA: +44 75 03 69 21 13