304/1 Extended Data Sheet

- Frequency range: 100 kHz 3.2 GHz
- Dynamic range: 135 dB (10 Hz IF bandwidth) typ.
- **Measurement time per point:** 125 µs per point, min typ.
- 16 logical channels with 16 traces each max.
- Automation programming in LabVIEW, Python, MATLAB, .NET, etc.

- Time domain and gating conversion included
- Fixture simulation
- Frequency offset mode, including vector mixer calibration measurements
- Up to 200,001 measurement points
- Multiple precision calibration methods and automatic calibration

304/1 Specifications¹

Primary Specifications

Impedance	50 Ohm
Test port connector	type N, female
Number of test ports	2
Frequency range	100 kHz to 3.2 GHz
Full frequency accuracy	±5·10 ⁻⁶
Frequency resolution	1 Hz
Number of measurement points	2 to 200,001
Measurement bandwidths (with 1/1.5/2/3/5/7 steps)	1 Hz to 30 kHz
Dynamic range ²	
100 kHz to 300 kHz	115 dB (125 dB typ.)
300 kHz to 3.2 GHz	130 dB (135 dB typ.)

Measurement Accuracy³

Accuracy of transmission measurements ⁴	Magnitude / Phase
100 kHz to 300 kHz	
+5 dB to +15 dB	±0.2 dB / ±2°
-25 dB to +5 dB	±0.1 dB / ±1°
-45 dB to -25 dB	±0.2 dB / ±2°
-65 dB to -45 dB	±1.0 dB / ±6°
300 kHz to 3.2 GHz	
+5 dB to +15 dB	±0.2 dB / ±2°
-50 dB to +5 dB	±0.1 dB / ±1°
-70 dB to -50 dB	±0.2 dB / ±2°
-85 dB to -70 dB	±1.0 dB / ±6°
Accuracy of reflection measurements ⁵	Magnitude / Phase
-15 dB to 0 dB	±0.4 dB / ±3°
-25 dB to -15 dB	±1.0 dB / ±6°
-35 dB to -25 dB	±3.0 dB / ±20°
Trace noise magnitude (IF bandwidth 3 kHz)	
100 kHz to 300 kHz	0.010 dB rms
300 kHz to 3.2 GHz	0.001 dB rms
Temperature dependence	0.02 dB/°C

Effective System Data

100 kHz to 3.2 GHz	
Directivity	46 dB
Source match	40 dB
Load match	46 dB
Reflection tracking	±0.10 dB
Transmission tracking	±0.08 dB

Uncorrected System Performance

100 kHz to 300 kHz	
Directivity	15 dB
Source match	10 dB
Load match	15 dB
300 kHz to 3.2 GHz	
Directivity	25 dB
Source match	15 dB
Load match	25 dB

Test Port Output

Power range	-55 dBm to +10 dBm
Power accuracy	±1.0 dB
Power resolution	0.05 dB
Harmonic distortion ⁶	-30 dBc
Non-harmonic spurious ⁶	-30 dBc

Test Port Input

Noise floor	
100 kHz to 300 kHz	-110 dBm/Hz
300 kHz to 3.2 GHz	-130 dBm/Hz
Damage level	+26 dBm
Damage DC voltage	35 V

Measurement Speed

Time per Point	125 µs typ.		
Port switchover time	10 ms		
Typical cycle time vs number of measurement points			
Frequency range	Number of points	Uncorrected	2-port calibration
100 kHz to 300 kHz (IF bandwidth 30 kHz)	51	13 ms	46 ms
	201	52 ms	123 ms
	401	104 ms	226 ms
	1601	413 ms	844 ms
300 kHz to 3.2 GHz (IF bandwidth 30 kHz)	51	7 ms	34 ms
	201	27 ms	73 ms
	401	53 ms	125 ms
	1601	207 ms	434 ms

[1] All specifications subject to change without notice. [2] The dynamic range is defined as the difference between the specified maximum power level and the specified noise floor. The specification applies at 10 Hz IF bandwidth. [3] Reflection and transmission measurement accuracy applies over the temperature range of (73 ± 9) °F or (23 ± 5) °C after 40 minutes of warming-up, with less than 1 °C deviation from the full two-port calibration temperature, at output power of -5 dBm. Frequency points have to be identical for measurement and calibration (no interpolation allowed). [4] Transmission specifications are based on a matched DUT, and IF bandwidth of 10 Hz. [5] Reflection specifications are based on an isolating DUT. [6] Specification applies over frequency range from 300 kHz to upper frequency limit, at output power of 0 dBm. © Copper Mountain Technologies - www.coppermountaintech.com - Rev. 2020Q4

304/1 Specifications¹

Frequency Reference Input

Port	10 MHz Ref In
External reference frequency	10 MHz
Input level	0 dBm to 4 dBm
Input impedance	50 Ohm
Connector type	BNC, female

Frequency Reference Output

Port	10 MHz Ref Out
ruit	10 IVII 12 Nei Out
Internal reference frequency	10 MHz
Output reference signal level at 50 Ohm impedance	1 dBm to 5 dBm
Connector type	BNC, female

Trigger Input

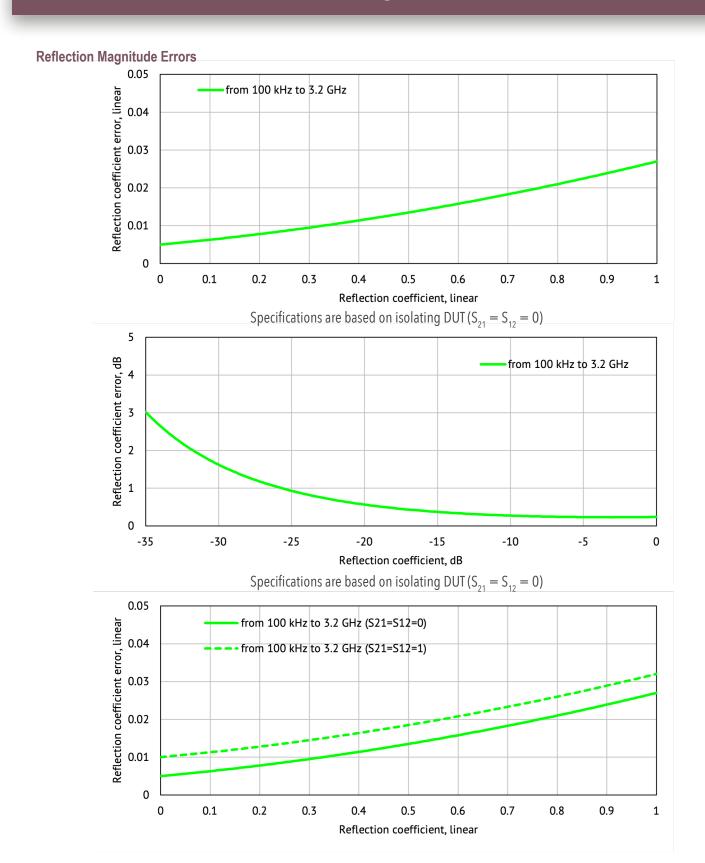
Port	Ext Trig
Input level	
Low threshold voltage	0.5 V
High threshold voltage	2.7 V
Input level range	+3 V to + 5 V
Pulse width	≥1 µs
Polarity	positive or negative
Input impedance	≥10 kOhm
Connector type	BNC, female

System & Power

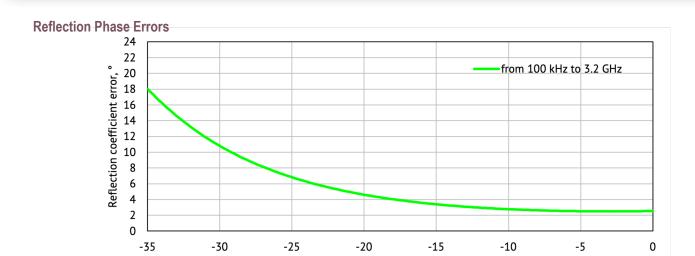
Operating system	Windows 7 and above
CPU frequency	1.0 GHz
RAM	512 MB
Interface	USB 2.0
Connector type	USB B
Power supply	110-240 V, 50/60 Hz
Power consumption	30 W

Dimensions

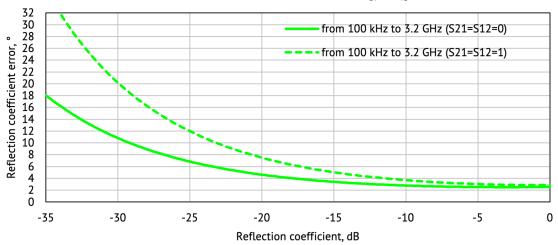
Length	324 mm
Width	415 mm
Height	96 mm
Weight	7 kg (247 oz)


Calibration

Recommended Factory Adjustment Interval 3 Years

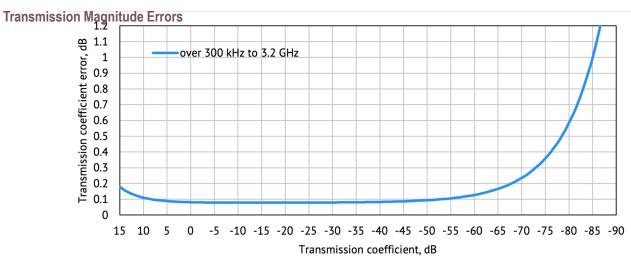

Environmental Specifications

Operating temperature	+5 °C to +40 °C (41 °F to 104 °F)
Storage temperature	-50 °C to +70 °C (-58 °F to 158 °F)
Humidity	90 % at 25 °C (77 °F)
Atmospheric pressure	70.0 kPa to 106.7 kPa

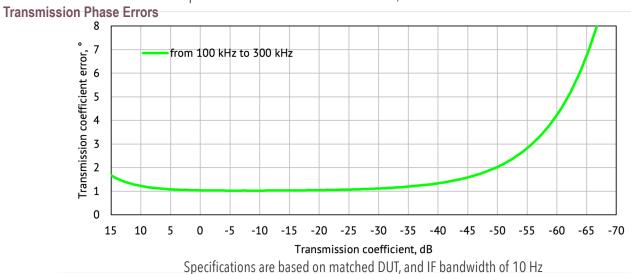

Reflection Accuracy Plots

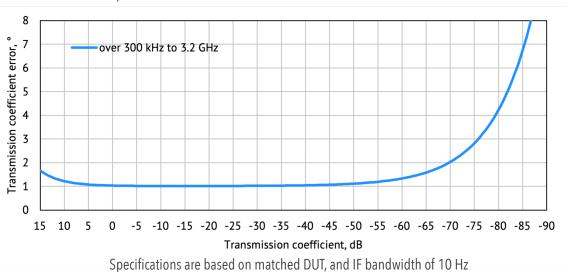
Reflection/Transmission Accuracy Plots

Reflection coefficient, dB Specifications are based on isolating DUT ($S_{21} = S_{12} = 0$)

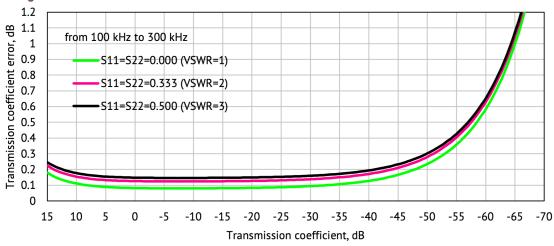


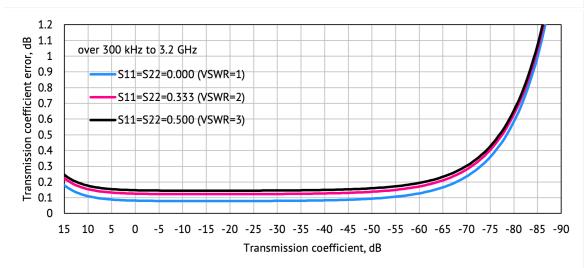
Transmission Magnitude Errors

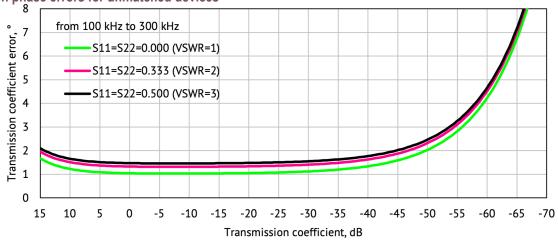



Specifications are based on matched DUT, and IF bandwidth of 10 Hz

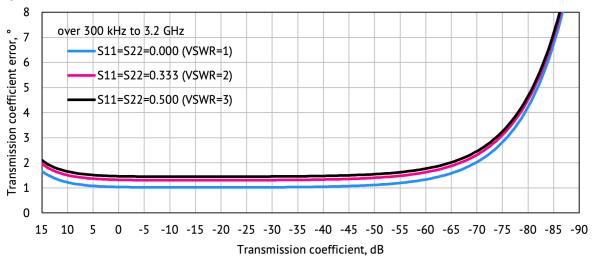
Transmission Accuracy Plots


Specifications are based on matched DUT, and IF bandwidth of 10 Hz

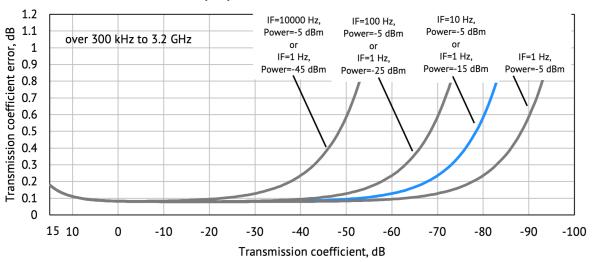



Transmission Accuracy Plots

Transmission magnitude errors for unmatched devices



Transmission phase errors for unmatched devices



Transmission Accuracy Plots

Transmission phase errors for unmatched devices

Transmission errors for matched devices vs Output power and IF Bandwidth

Technology is supposed to move. It's supposed to change and update and progress. It's not meant to sit stagnant year after year simply because that's how things have always been done.

The engineers at Copper Mountain Technologies are creative problem solvers. They know the people using VNAs don't just need one giant machine in a lab. They know that VNAs are needed in the field, requiring portability and flexibility. Data needs to be quickly transfered, and a test setup needs to be easily automated and recalled for various applications. The engineers at Copper Mountain Technologies are rethinking the way VNAs are developed and used.

Copper Mountain Technologies' VNAs are designed to work with the Windows or Linux PC you already use via USB interface. After installing the test software, you have a top-quality VNA at a fraction of the cost of a traditional analyzer. The result is a faster, more effective test process that fits into the modern workspace. This is the creativity that makes Copper Mountain Technologies stand out above the crowd.

We're creative. We're problem solvers.

Full-Size VNA Series Overview

	304/1	804/1	808/1
Frequency Range	100 kHz to 3.2 GHz	100 kHz to 8 GHz	100 kHz to 8 GHz
Number of Ports	2	2	4
Dynamic Range	135 dB, typ.	140 dB, typ.	140 dB, typ.

631 E. New York Street Indianapolis, IN 46202

United States: +1.317.222.5400 APAC: +65.63.23.6546 Latin America: +1.954.706.5920 EMEA: +44 75 03 69 21 13