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This seminar is about antenna theory. Most of the text books (and 
seminars) on antennas fall into one of two categories:
1. Basic introduction and “how-to” books using various antenna 
types as examples
2. Advanced textbooks for senior and graduate-level study (Kraus, 
Balanis, Stutzman, and several more classics some dating back to the 
1930s). 
For over 30 years the Kraus text has been my “antenna bible” and 
therefore my intermediate treatment of antenna theory (physics) has 
an is an attempt to summarize and simplify sections of the Kraus 
text.



Figure 1 Here is a photo of an important section of my office bookcase.



There is very little in print for “intermediate” level treatments.
After many years of studying and working on antennas I came
to the conclusion that the traditional advanced academic texts
could be simplified into a “transitional” text between basic
introductions and the rigor of the formal academic
treatments. Also, after decades explaining antennas to
innumerable people, I found there were areas that were
common to misunderstandings.
This was the motivation for writing “Antenna Physics, an
Introduction”.



Figure 2



This text is an attempt to bridge that gap. The book (now in the 2nd

edition) is being used as an adjunct text to the more traditional
engineering text books at several universities as well as advanced
amateurs and practicing engineers
This seminar consists of selected sections from this book. Many of
the complex equations used to describe antenna theory distill down
to derivations of simple concepts well understood by engineers and
technicians: for examples, Ohm’s Law, and the Power Law.
Therefore, within our limited time we will review some very basic
concepts that are often confusing and misunderstood.
Of course, there is no replacement for the more advanced texts,
but there is a need for an intermediate treatment.



In this seminar we will review
1.Antenna Aperture
2.Relating Gain to Aperture
3.Antenna Radiation Resistance
4.Antenna Radiation Mechanics
5.Basics of RF Power Related to Antennas

Some basic knowledge of RF/antennas is assumed, such as gain, the
use of decibels, general types of antennas, etc.



Antenna Aperture

Figure 3

We begin with a 100 watt light bulb (since
light is easy to “visualize”) located at the
center of an imaginary sphere. The light bulb
is “isotropic” in that it emits light power
equally in all directions (3D). Therefore, the
total light power traveling through the sphere
is 100 watts, evenly distributed over the
sphere. The area of a sphere is 4𝜋𝑅!. We
place a (100% efficient) solar cell on the
sphere with an area A. If A is 1/100 the area
of the sphere, we have recovered 1 watt

𝑃" = 𝑃#
𝐴

4𝜋𝑅!
= 1 𝑤𝑎𝑡𝑡



Aside: Since R is the distance to the solar cell, we can call it D.
Separating D from the equation we get

𝑃! = 𝑃"
𝐴
4𝜋

1
𝐷#

You may recognize $
%!

. It is the famous inverse-square law. Where
the power received is inversely proportional to the distance from
the source. If we place a second solar panel next to the first, we
double the aperture and thus double the received power:

𝑃! = 𝑃"
2𝐴
4𝜋𝑅#

= 2 𝑤𝑎𝑡𝑡𝑠

The above discussion is valid for all (wavelengths) of EM waves
including radio, but, why do we care?



• Aperture must be used to calculate the 
power loss and thus define the “link 
budget” of this configuration. Here, the 
distance between the antennas is the 
equivalent to the radius of the sphere, 
and if we assume an isotropic 
transmitter and a receiver with 
aperture A we can easily calculate the 
received power. 

• But what if the transmitter uses an 
antenna other than isotropic? Some 
other gain? And, how do we (generally) 
relate gain to aperture? After all, gain 
not aperture is most often used for a 
key antenna specification.

This simple diagram 
illustrates a critical 
question in radio 
engineering. The far more 
familiar terms of power 
and gain do not provide 
enough information to 
solve this simple yet very 
important problem.
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Relating Gain to Aperture



We have hinted that aperture is related to gain, and that more gain
implies greater aperture, but what is the relationship? We return to
the isotropic antenna for our basic reference. An isotropic antenna
has been standardized to a gain of 1, or 0dBi, so this is the obvious
reference also for antenna aperture. So, what is the aperture of an
isotropic antenna? THIS is the key trick question. This simple term
relates these two fundamental antenna specifications:

𝐴&'( =
𝜆#

4𝜋

Where λ is the wavelength of operation in 𝑚# (or any measurement
standard you want.)



We can now determine the path loss for a free space radio link
between isotropic receive and transmit antenns:

!
"#$!

=
"!

#$
"#$!

= %
"#$

&
and 𝑃' = 𝑃(

%
"#$

&

For example, assume a 1 meter wavelength (300 MHz) and a 10 km
distance over a free space path:

𝜆
4𝜋𝑅

#

= 63.32 𝑥 10)$# = −102 𝑑𝐵

So, for 100 watts of transmitter isotripoic power (+50 dBm) we
receive
6.32 x 10)* +,""' or -52 dBm



The numerical gain of a $
#
λ dipole is 1.64 over an isotropic antenna, so

the aperture of a standard $
#
λ dipole will be $../0!

/1
.

If we substitute dipoles at each end, we increase gain by 1.64# =
2.69 = 4.3 𝑑𝐵𝑖 where the broadside gain of a $

#
λ dipole is 2.15 dBi.

Thus to adjust aperture for gain difference, we simply use the proper

numerical coefficient for 0!

/1
. As implied in this discussion, transmitter

EIRP (effective radiated power referenced to an isotropic source)
is simply 𝑃"!,2'3&""4! 𝑥 𝐺&("6) ,2"422,.



For completeness, ERP (effective radiated power is 
referenced to a $

#
λ dipole (0dBd) is always 2.15 dBi less than 

EIRP 0𝑑𝐵𝑑 = 0𝑑𝐵𝑖 + 2.15 , where EIRP is referenced to the 
isotropic .

Gain may also be defined by a steradian measure who’s 
area contains more than twice the average power from the 
source, where: 𝐺 = /1('!)

,2"422,('!)
. For non-isotropic antennas, 

the aperture will be different in different directions from 
the antenna, much like the aperture will be different in 
different directions from a solar cell, and the same for 
gain.



Here we show the approximate aperture of a ½ λ dipole antenna. The
actual aperture boundary is not distinct like shown but rather “fuzzy”
However, the effective aperture (the actual “collecting area”) IS well

defined by
!.#$%!

$&

Figure 5



Figure 6

This leads to another key application of
antenna aperture. If two or more
antennas are to be “stacked” we can
know how far the spacing(s) must be
between the antennas. Here we see a
proper spacing of two dipole antennas.
The important goal is not to duplicate
the apertures of the two antennas. This
is analogous to “shading” one solar
panel with another. For Yagi antennas,
the aperture increases by adding
additional elements, thus the required
spacing increases.



Thus far we have only treated 100% efficient antennas. Here again,
there is a simple relationship between antenna gain and aperture.

𝐺𝑎𝑖𝑛 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑥 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑥 100
The equivalency to aperture is:

𝐴4 = 𝐴43 𝑥 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑥 100
Where 𝐴4 is effective aperture and 𝐴43 is the maximum effective
aperture.
For example, a 100% efficient dipole will have a gain of 2.15 dBi (1.64),
while a dipole with resistive loss of 50% will have a gain of -0.85 dBi
(.82), but the two will have identical directivity, therefore the
directivities are the same



To complete the algebra, we can derive a set of closed-form equations
for antenna gain (related to aperture) and a final term:
Let us define gain as G. Again 𝐴4 is

𝐴4 =
80!

/1
and thus the numerical gain is 𝐺 = /19"

0!

By substituting the actual apertures for the transmit and receive
antennas we now have all the terms necessary to compute the actual
path loss in our original problem:

𝑃! = 𝑃"
𝐴4"𝐴4!
𝑟#𝜆#

Thus we have derived the Friis Transmission Formula, where 𝐴4"𝐴4! is 
the product of the transmitter and receiver apertures. 



Converting back to gain we find the closed equation which should
now look familiar:

𝑃! = 𝑃"𝐺"𝐺!
𝜆
4𝜋𝑟

#

Where 𝐺"𝐺! is the product of the transmitter and receiver
numerical gains.
These equations are applicable to applications ranging from
garage door openers to Voyager-to-earth link budgets. Through
algebra we can derive any term if we know the other terms:
distance to a star, power of a source, brightness of a star, etc.



Parabolic “dish” antennas are also called
“aperture antennas” since the 𝐴43 is simply the
cross-sectional area of the reflector. In this case
the aperture is fixed and independent of λ. So,
gain increases as the square of the frequency
(the limit being the accuracy of the parabolic
surface). This is easily defined by:

𝐺 =
4𝜋𝐴4
𝜆#

The shorter the wavelength the higher the gain.
Figure 7
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Radiation Mechanics



There are three fundamental types of electrical and magnetic fields:
static, inductive and radiated. Static refers to the quite familiar types
of electric static and magneto static fields. Inductive fields are the
types most understood by the electric field inside a capacitor or the
magnetic field around an inductor when an AC voltage is applied.
Radiated fields are always generated by an accelerating current
traveling through space (usually on a conductor). A sine wave is an
example of an accelerating current and most often used in radio
communications. The accelerating current must have enough
“space” for the resulting fields to detach themselves from the
current source, otherwise they remain inductive fields.



Figure 8
Copyright McGraw Hill

On a dipole antenna the oscillating charges (+ and -) 
move from one end of the dipole to the other at the 
RF frequency in opposite directions. This creates a 
strong oscillating electric field with its E field vector 
in line with the antenna element. 

The magnetic field consists of circular field vector 
lines around the element. The direction (polarity) of 
the magnetic field also oscillates and reverses its 
vector direction at the RF rate and detaches itself in 
the same manner of the electric field. 



The power of a plane wave is evenly distributed
between E and B. E is measured in
:
3

and B in 9
3

(field strength), the product

being ;,""'
3! (power law and dimensional

transformation), and the ratio
#
$
%
$
= 377𝛺 =

𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒 (Ohm’s Law).

The Poynting vector (direction of propagation)
therefor must be normal to the line of the
dipole element.

Figure 9



Radiation Resistance



Aside from discussing antenna aperture, a widely misunderstood
antenna specification is radiation resistance or 𝑅! . Many of the
commercial (marketing) requirements for “antennas” is to make them
smaller, cheaper, and perform flawlessly. Of course, these
requirements are all mutually exclusive. Here we will discuss some
basics of 𝑅! and then focus on the popular issue of small antennas.
First, we’ll define 𝑅! for a simple dipole antenna to get acquainted
with the term.



We can define 𝑅! as the resistance resulting from a circuit losing
power to radiation (which is what a transmit antenna is supposed to
do). In other words, a transmit antenna’s 𝑅! is simply a load
resistance. By reciprocity, the receive antenna’s (most often the
same as the transmit antenna) 𝑅! is the source resistance with the
receiver front end as the load.
A simple description is “the larger the antenna (compared to the 
wavelength)” the “easier” it is for power to be created in the form of 
the radiated wave. This results in a higher 𝑅!. 



The easiest type of antenna to quantify is a one-dimensional
structure like a ½ λ dipole antenna. This is the equation defining 𝑅!
on a linear antenna element.

𝑅! =
ℎ4#𝑍<
4𝐴4

ℎ4 is the effective height or also called the effective length of a
linear antenna, 𝑍< is the impedance of free space (about 377Ω), and
we already know what 𝐴4 is.



ℎ4 =
=&'>(
=$&)

𝐼,? is the average current value on the antenna
𝐼3,6 is the maximum current on the antenna

ℎ@ is the physical height of the antenna, where the height is
normalized to λ=1. We will also normalize the maximum current to 1
amp and thus the average current to .637



Example: calculation of Rr for a ½ wave dipole in free space

For half a sine wave the average current is .637 of the maximum 
current. 

Figure 10



For a ½ wave dipole ℎ@ is .5, therefore

ℎ4# =
(..AB 6 .C)!

$
= .101𝑚#

and 𝐴4 =
$../0!

/1

The value for 𝜆 is normalized in both the numerator and denominator
terms.

Therefore: 𝑅! =
>"!D*
/9"

= .$<$3! 6 ABBE

/+.-./
!

.0

= .$<$ 6ABBE 6 1
$../

= 72.94𝛺

Where λ is always 1 for effective height
73 𝛺 is the 𝑅! and the feedpoint impedance at the center of a 1/2λ 
dipole. This coincidence is not always true. 



There are many instances where the resistive part of a feedpoint
impedance is not the same as 𝑅!.
Notice the heavy dependence upon the physical height of the
antenna. Note: for 2 and 3D antennas the same holds true, the
smaller the antenna, the lower 𝑅! will be.
A typical example of a very small antenna’s complex impedance is 2 -
j2740Ω. Here 2 is the part of the impedance that represents the real
part while -2740 is the capacitive reactive part. If there is loss in the
antenna, and its associated circuitry, the loss resistance will simply
add to the real 𝑅!. So, if there is 1Ω loss, the measured impedance
will be 3Ω real.



Conclusion 1: small antennas have low 𝑅! so they are prone to losses

and thus inefficiencies. Antenna efficiency is defined as 𝑅! =
F1

F1GF2344
.

Conclusion 2. Small antennas exhibit very high capacitive reactances
that must be tuned out by inductor(s). This creates a resonant circuit
comprised of the antenna feedpoint and the external tuning circuit. In
turn, this results in a narrow bandwidth for the circuit where

𝑄 = H
F

. From this elementary equation we can easily see that for
higher 𝑅! , efficiency and bandwidth increase.



Basics of RF Power Related 
to Antennas



Figure 12

Here we use a very simple analogy to a battery,  (the elementary 
maximum power transfer function) and a simplified circuit diagram of the 
receive case. All voltage sources exhibit a source resistance (in these 
examples we ignore reactances, as we are only interested in real power). 
Maximum power is transferred to the load when the source resistance is 
equal to the load resistance. When reactance (or without) such a 
condition is called a conjugate match. 

Figure 11



In receive systems there is a relatively small trade-off between receiver
noise figure and maximum power transfer. However, here we will assume a
conjugate match.
In the battery example when a conjugate match is achieved, ½ of the
power is delivered to load and ½ the power is dissipated as heat since the
internal resistance is just that, a resistor. However, in the RF receiver case,
the source resistance is 𝑅! . The result is that ½ of the received power is re-
radiated back into space since 𝑅! does not dissipate heat! Indeed, this is
the best power transfer possible with a receive antenna. This ½ of lost
power is taken into account for gain and aperture calculations, so don’t get
thrown off. In most cases, a near-conjugate match is ideal for the receive
condition.



The transmit condition is different. If 
we assume a conjugate match, then 
the transmit system will be less than 
50% efficient, and usually closer to 
30—40% which would be 
unacceptable. For transmit 
conditions, the transmit source 
impedance is typically tuned to a 
lower load impedance than the 
actual load impedance (usually 50 
Ohms). This provides for a much 
higher efficiency at the expense of 
maximum power transfer. 

Figure 13



The actual optimum output impedance is a function of several
variables (usually a partial differential equation) including the device
(transistor or tube) characteristics and the output matching circuit.
For details on this consult a textbook on RF power circuit design.
When a transmitter is specified as 50 Ohms output, what they are
really saying is that the transmitter is tuned for maximum efficiency
assuming a 50 Ohm load.


